Unideal Iris Segmentation Using Region-Based Active Contour Model
نویسندگان
چکیده
Robust segmentation of an iris image plays an important role in iris recognition. Most state-of-the-art iris segmentation algorithms focus on the processing of the ideal iris images that are captured in a controlled environment. In this paper, we process the unideal iris images that are acquired in an unconstrained situation and are affected severely by gaze deviation, eyelids and eyelashes occlusion, non uniform intensity, motion blur, reflections, etc. The novelty of this research effort is that we apply the modified Chan-Vese curve evolution scheme, which extracts the intensity information in local regions at a controllable scale, to find the pupil and iris boundaries accurately. A data fitting energy is defined in terms of a contour and two fitting functions that locally approximate the image intensities on the two sides of the contour. This energy is then incorporated into a variational level set formulation with a regularization term. Due to the kernel function used in energy functional, the extracted intensity information of the local regions is deployed to guide the motion of the contour, which thereby assists the curve evolution scheme to cope with the intensity inhomogeneity that occurs in the same region. The contours represented by the proposed variational level set method may break and merge naturally during evolution, and thus, the topological changes are handled automatically. The verification performance of the proposed scheme is validated using the UBIRIS Version 2, the ICE 2005, and the WVU unideal datasets.
منابع مشابه
Bovine Iris Segmentation Using Region-based Active Contour Model
Iris recognition is one of the most reliable and accurate biometric technologies, as the richness and apparent stability of the iris texture make it robust. Iris segmentation is a critical part in iris recognition, because it defines the inner and outer boundaries of iris region which is used for feature analysis. Active contour model, also known as snake, is a powerful image segmentation techn...
متن کاملناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کاملIris Segmentation Using Geodesic Active Contours and GrabCut
Iris segmentation is an important step in iris recognition as inaccurate segmentation often leads to faulty recognition. We propose an unsupervised, intensity based iris segmentation algorithm in this paper. The algorithm is fully automatic and can work for varied levels of occlusion, illumination and different shapes of the iris. A near central point inside the pupil is first detected using in...
متن کاملA New Iris Segmentation Method Based on Improved Snake Model and Angular Integral Projection
Segmenting iris region is fundamental for iris-based biometric systems. The overall performance of an iris recognition system is highly dependent on accurate iris segmentation. In this paper, a new algorithm for iris segmentation is proposed towards more accurate and efficient segmentation, it detects the precise pupil contour and localizes the limbic boundary. An improved snake model is presen...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کامل